Infinitely many insolvable Diophantine equations II

نویسندگان

  • Yasutsugu Fujita
  • Noriaki Kimura
چکیده

Let f(X1, . . . , Xm) be a quadratic form in m variables X1, . . . , Xm with integer coefficients. Then it is well-known that the Diophantine equation f(X1, . . . , Xm) = 0 has a nontrivial solution in integers if and only if the equation has a nontrivial solution in real numbers and the congruence f(X1, . . . , Xm) ≡ 0 (mod N) has a nontrivial solution for every integer N > 1. Such a principle is called the Hasse principle. In this paper, we explicitly give several types of families of the Diophantine equations of degree two, not homogeneous, for which the Hasse principle fails. 2000 Mathematics Subject Classification: 11D09, 11A07

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

Parametric solutions for some Diophantine equations

Under some hypotheses we show that the Diophantine equation (1) has infinitely many solutions described by a family depending on k + 2 parameters. Some applications of the main result are given and some special equations are studied.

متن کامل

Combinatorial Diophantine Equations and a Refinement of a Theorem on Separated Variables Equations

We look at Diophantine equations arising from equating classical counting functions such as perfect powers, binomial coefficients and Stirling numbers of the first and second kind. The proofs of the finiteness statements that we give use a variety of methods from modern number theory, such as effective and ineffective tools from Diophantine approximation. As a tool for one part of the statement...

متن کامل

Artin’s Conjecture and Systems of Diagonal Equations

We show that Artin’s conjecture concerning p-adic solubility of Diophantine equations fails for infinitely many systems of r homogeneous diagonal equations whenever r > 2.

متن کامل

INFINITELY MANY POSITIVE INTEGER SOLUTIONS OF THE QUADRATIC DIOPHANTINE EQUATIONS x 2 − 8 B

In this study, we consider the quadratic Diophantine equations given in the title and determine when these equations have positive integer solutions. Moreover, we find all positive integer solutions of them in terms of Balancing numbers Bn, Pell and Pell-Lucas numbers, and the terms of the sequence {vn} , where {vn} is defined by v0 = 2, v1 = 6, and vn+1 = 6vn − vn−1 for n ≥ 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010